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Problem 

 Given a high-resolution computer image of a map of an irregularly 

shaped lake with several islands, determine the water surface 

area. Assume that the x-y coordinates of every point on the map 

can be measured. 

 

Suggest alternative solution approaches! 



Monte Carlo Simulation 
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Step 1: 

Enclose the area of interest in the smallest rectangle of 

known dimensions X and Y. Set j = 1, S = 0, and choose a 

large value for N where: 

 j = trial number 

 S = number of hits on the water surface area 

 N = total number of trials 



Monte Carlo Simulation 
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Step 2: 

Generate a uniformly distributed random number, RNx  

over the length of X. 

Step 3: 

Generate another uniformly distributed random number, RNy  

over the length of Y. 



Monte Carlo Simulation 
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Step 4: 

If the point of intersection, (RNx , RNy), falls on the water 

surface area, add 1 to S. 

Step 5: 

Add 1 to j. If j > N, go to Step 6; otherwise, go to Step 2. 



Monte Carlo Simulation 
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Step 6: 

The estimate of the water surface area, A, is given by: 

 

NOTE:    As N  ,     A  true value of the area 
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Problem 

 Use the fundamental theory and logic of the Monte Carlo 

Simulation technique to estimate the area under the Sine curve 

over 0 and . 
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Monte Carlo Simulation 

Step 1: 

Enclose the area of interest in the smallest rectangle of 

known dimensions  and 1. Set j = 1, S = 0, and choose a 

large value for N where: 

 j = trial number 

 S = number of hits on the area under the Sin (x) curve 

 N = total number of trials 
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Monte Carlo Simulation 

Step 2: 

Generate a uniformly distributed random number, RNx  

over the length of . 

Step 3: 

Generate another uniformly distributed random number, 

RNy  over the length of 1. 
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Monte Carlo Simulation 

Step 4: 

If the point of intersection, (RNx , RNy), falls on or below the 

Sin (x) curve (i.e., if RNy ≤ Sin (RNx)), add 1 to S. 

Step 5: 

Add 1 to j. If j > N, go to Step 6; otherwise, go to Step 2. 
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Monte Carlo Simulation 

Step 6: 

The estimate of the area, A, is given by: 

 

NOTE:    As N  ,     A  2 (true value of the area) 
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Problem 

 Use the fundamental theory and logic of the Monte Carlo 

Simulation technique to solve the following optimization 

problem: 

 

Maximize  Z = ( eX
1

 + X2 ) 
2 + 3 ( 1 – X3 ) 

2 

Subject to: 

   0 ≤ X1 ≤ 1 

   0 ≤ X2 ≤ 2 

   2 ≤ X3 ≤ 3 



 Step 1: 

Set j = 1 and choose a large value for N where: 

j = trial number 

N = total number of trials 

Monte Carlo Simulation 

 Use the fundamental theory and logic of the Monte Carlo Simulation 

technique to solve the following optimization problem: 

 

Maximize  Z = ( eX
1

 + X2 ) 
2 + 3 ( 1 – X3 ) 

2 

Subject to: 

   0 ≤ X1 ≤ 1 

   0 ≤ X2 ≤ 2 

   2 ≤ X3 ≤ 3 



 Step 2: 

Generate a proper random number, RN1 , over 0 and 1. 

 Step 3: 

Generate another proper random number, RN2 , over 0 and 2.  

 Step 4: 

Generate another proper random number, RN3 , over 2 and 3.  

 

Monte Carlo Simulation 

 Use the fundamental theory and logic of the Monte Carlo Simulation 

technique to solve the following optimization problem: 

 

Maximize  Z = ( eX
1

 + X2 ) 
2 + 3 ( 1 – X3 ) 

2 

Subject to: 

   0 ≤ X1 ≤ 1 

   0 ≤ X2 ≤ 2 

   2 ≤ X3 ≤ 3 



 Step 5: 

Substitute RN1 for X1 , RN2 for X2 , and RN3 for X3 in the 

objective function. Store its value in Z(j) and record the 

corresponding values for X1 , X2 , and X3. 

 Step 6: 

Add 1 to j.  If j > N, go to Step 7; otherwise, go to Step 2.  

 

Monte Carlo Simulation 

 Use the fundamental theory and logic of the Monte Carlo Simulation 

technique to solve the following optimization problem: 

 

Maximize  Z = ( eX
1

 + X2 ) 
2 + 3 ( 1 – X3 ) 

2 

Subject to: 

   0 ≤ X1 ≤ 1 

   0 ≤ X2 ≤ 2 

   2 ≤ X3 ≤ 3 



 Step 7: 

The approximate solution of the problem is determined by 

the values of X1 ( = RN1 ), X2 ( = RN2 ), and X3 ( = RN3 ), which 

correspond to the maximum value of { Z(j), j = 1, 2, 3, ..., N }. 

 

 NOTE:    As N  , X1  1, X2  2, and X3  3. 

 

Monte Carlo Simulation 

 Use the fundamental theory and logic of the Monte Carlo Simulation 

technique to solve the following optimization problem: 

 

Maximize  Z = ( eX
1

 + X2 ) 
2 + 3 ( 1 – X3 ) 

2 

Subject to: 

   0 ≤ X1 ≤ 1 

   0 ≤ X2 ≤ 2 

   2 ≤ X3 ≤ 3 


